Abstract

Mathematical modeling of the energy metabolism of brain cells plays a central role in understanding data collected with different imaging modalities, and in making predictions based on them. During the last decade, several sophisticated brain metabolism models have appeared. Unfortunately, the picture of the metabolic details that emerges from them is far from coherent: while each model has its justification and is in agreement with some experimental data, some of the predictions of different models can diverge from each other significantly. In this article, we review some of the recent published models, emphasizing similarities and differences between them to understand where the differences in predictions stem from. In that context we present a probabilistic approach, which rather than assigning fixed values to the model parameters, regard them as random variables whose distributions are inferred on in the light of stoichiometric information and different observations. The probabilistic approach reveals how much intrinsic variability a metabolic system may contain, which in turn may be a valid explanation of the different findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call