Abstract

The wilty tomato mutant flacca and the normal variety Rheinlands Ruhm were used in this research. The mutant phenotype was explained mainly by hormonal changes. One of these, the decrease in abscisic acid level, was suggested as the hormonal change closest to the mutated gene. The cause of the lower abscisic acid level in the mutant, which may be enhanced breakdown or inactivation, or inhibited biosynthesis, was investigated. The first possibility was studied by comparing mutant and normal plants treated with t-abscisic acid-2-C14 for (1) rate of production of labeled methanol-extractable metabolites and (2) radioactivity remaining in the methanol-unextractable fraction. The level of trans, trans-abscisic acid relative to that of cis,trans-abscisic acid was studied in untreated plants. Only two radioactive regions containing metabolites of abscisic acid were detected from either of the plant types, and their rates of production relative to total radioactivity was equal. The radioactivity in the methanolunextractable fraction and the level of trans,trans-abscisic acid were very low in both mutant and normal plants. The second possibility was studied partly by comparing the levels of various xanthophylls in mutant and normal plants and their effect after illumination on cress seed germination. Xanthophylls of both plant types were identical in their absorption spectra, but their levels were higher in the mutant. Of these xanthophylls, illuminated neoxanthin inhibited seed germination in both plant types, but more effectively in the mutant. The most probable explanation for the low level of cis,trans-abscisic acid in flacca is that the conversion of farnesyl PiP to abscisic acid is inhibited in this plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call