Abstract

BackgroundIt is well known that androgen-deprivation therapy (ADT) can inevitably drive prostate cancer (PCa) cells into a castration-resistant state. According to the “Warburg effect”, the metabolism of aggressive tumor cells increases significantly. The growth of cancer cells depends on glycolysis, which may be a potential target for cancer control. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) plays key roles in the proliferation and metastasis of PCa cells. However, there is very limited knowledge on the role of PFKFB4 in the conversion to castration resistance. The present study aimed to determine the changes in glucose consumption and PFKFB4 expression in LNCaP cells and androgen-independent LNCaP (LNCaP-AI) cells during the whole process of androgen-independent growth. Additionally, PFKFB4 expression in human PCa tissues was evaluated.MethodsWe established an androgen-independent LNCaP-AI cell line derived from LNCaP cells to mimic the traits of castration resistance in vitro. LNCaP-AI and LNCaP cells were cultured in the corresponding medium containing the same amount of glucose. At the end of experiments, the medium supernatant and blank medium were collected, and absorbance was measured. LNCaP-AI and LNCaP cells were harvested to detect PFKFB4 expression by Western blotting. Prostate tissue samples including PCa tissue, carcinoma-adjacent tissue and benign prostatic hyperplasia (BPH) tissue specimens were evaluated for PFKFB4 expression using immunohistochemistry.ResultsIn 18 h supernatant samples, the glucose consumption and lactate secretion of LNCaP-AI cells were higher than those of LNCaP cells. The Western blot results indicated that PFKFB4 expression was increased in LNCaP-AI cells compared with LNCaP cells. Immunohistochemistry revealed that the expression of PFKFB4 in PCa tissue specimens was higher than that in BPH and adjacent tissue specimens. However, the differences in PCa tissue before and after ADT were not statistically significant.ConclusionPFKFB4 may be associated with enhanced glycolysis during the androgen-independent growth of PCa cells in vitro. PFKFB4 may be a marker of PCa progression. Our results provide a rationale for further clinical investigation of PCa treatment focused on controlling PFKFB4 expression.

Highlights

  • It is well known that androgen-deprivation therapy (ADT) can inevitably drive prostate cancer (PCa) cells into a castration-resistant state

  • Establishment and validation of LNCaP-AI cells To mimic the process of involved in the conversion to castration-resistant disease and following the methods of a previous study, we established an androgen-independent LNCaP-AI cell line derived from LNCaP cells cultured in RPMI-1640 medium containing 10% DCC-fetal bovine serum (FBS)

  • The experimental results show that the LNCaP-AI cell model successfully simulates the clinical process of castration-resistant prostate cancer (CRPC) transformation in vitro and that glucose metabolism and PFKFB4 expression are increased when PCa cells develop the androgen-independent phenotype

Read more

Summary

Introduction

It is well known that androgen-deprivation therapy (ADT) can inevitably drive prostate cancer (PCa) cells into a castration-resistant state. The growth of cancer cells depends on glycolysis, which may be a potential target for cancer control. There is very limited knowledge on the role of PFKFB4 in the conversion to castration resistance. The exact molecular mechanisms underlying the development of castration-resistant prostate cancer (CRPC) remain unclear. Regarding the treatment of CRPC, currently, enzalutamide and abiraterone are used to interrupt androgen receptor (AR) signaling and inhibit androgen synthesis in tumors, but PCa almost always becomes resistant after an initial period of response, and this phenomenon is often associated with increased glycolysis in tumor cells [5, 6]. The regulatory proteins in glycolysis might be potential targets in cancer control

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call