Abstract

Isorhamnetin-3-O-neohesperidoside is the major active substance of Puhuang, a traditional herb medicine widely used in clinical practice to tackle many chronic diseases. However, little is known about the interactions between this ingredient and intestinal flora. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry together with automated data analysis software (Metabolynx™) was used for analysis of the metabolic profile of isorhamnetin-3-O-neohesperidoside by the isolated human intestinal bacteria. The parent and three metabolites isorhamnetin-3-O-glucoside, isorhamnetin and quercetin were detected and identified based on the characteristics of their deprotonated molecules. These metabolites indicated that isorhamnetin-3-O-neohesperidoside was firstly deglycosylated to isorhamnetin-3-O-glucoside and subsequently to the aglycone isorhamnetin, and the latter was demethylated to quercetin. The majority of bacteria such as Escherichia sp. 23 were capable of converting isorhamnetin-3-O-neohesperidoside to considerable amounts of aglycone isorhamnetin and further to minor amounts of quercetin, while minor amounts of isorhamnetin-3-O-glucoside were detected in minority of bacterial samples such as Enterococcus sp. 30. The metabolic pathway and metabolites of isorhamnetin-3-O-neohesperidoside by the different human intestinal bacteria were firstly investigated. Furthermore, the metabolites of isorhamnetin-3-O-neohesperidoside might influence the effects of traditional herb medicines. Thus, our study is helpful to further unravel how isorhamnetin-3-O-neohesperidoside and Puhuang work in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call