Abstract
AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is proposed to function as a “fuel gauge” to monitor cellular energy status in response to nutritional environmental variations. However, in fish, few studies have addressed the metabolic consequences related to the activation of this kinase. This study demonstrates that the rainbow trout (Oncorhynchus mykiss) possesses paralogs of the three known AMPK subunits that co-diversified, that the AMPK protein is present in the liver and in isolated hepatocytes, and it does change in response to physiological (fasting-re-feeding cycle) and pharmacological (AICAR and metformin administration and incubations) manipulations. Moreover, the phosphorylation of AMPK results in the phosphorylation of acetyl-CoA carboxylase, a main downstream target of AMPK in mammals. Other findings include changes in hepatic glycogen levels and several molecular actors involved in hepatic glucose and lipid metabolism, including mRNA transcript levels for glucokinase, glucose-6-phosphatase and fatty acid synthase both in vivo and in vitro. The fact that most results presented in this study are consistent with the recognized role of AMPK as a master regulator of energy homeostasis in living organisms supports the idea that these functions are conserved in this piscine model.
Highlights
Intracellular ATP concentrations must be maintained within a narrow range to sustain appropriate metabolic function
We employ two known activators of AMPK, AICAR and metformin (1,1-dimethylbiguanide hydrochloride) to explore the metabolic effects of the activation of AMPK in rainbow trout liver. We identified in both trout liver and isolated hepatocytes the phosphorylation status of AMPK and indirectly assessed its activity by examining the phosphorylation of the AMPK downstream target acetyl-CoA carboxylase (ACC) at the serine residue (Ser79)
AICAR and metformin-induced AMPK phosphorylation in trout liver and hepatocytes Our study demonstrates for the first time in rainbow trout the presence of AMPK in its total form and, more importantly, the phosphorylation at the threonine at position 172 (Thr172) of the a subunit
Summary
Intracellular ATP concentrations must be maintained within a narrow range to sustain appropriate metabolic function. Recent evidence indicates that the coordination of this task is achieved through the AMP-activated protein kinase (AMPK) [1]. This kinase is typically activated by an increase in the AMP:ATP ratio. The AMPK of mammals exists as a heterotrimeric complex consisting of a catalytic a subunit and two regulatory subunits b and c [1]. Homologues of all three subunits exist in mammals, invertebrates, yeast, plants and the primitive protozoa, with a high degree of conservation suggesting that this signaling pathway evolved over one billion years ago to regulate metabolic homeostasis, the exact evolutionary dynamics of AMPK are unclear [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.