Abstract

The tyrosine kinase inhibitor TAS-115 that blocks VEGF receptor and hepatocyte growth factor receptor MET signaling exhibits antitumor properties in xenografts of human gastric carcinoma. In this study, we have evaluated the efficacy of TAS-115 in preventing prostate cancer metastasis to the bone and bone destruction using the PC3 cell line. When PC3 cells were injected into proximal tibiae in nude mouse, severe trabecular and cortical bone destruction and subsequent tumor growths were detected. Oral administration of TAS-115 almost completely inhibited both PC3-induced bone loss and PC3 cell proliferation by suppressing osteoclastic bone resorption. In an ex vivo bone organ culture, PC3 cells induced osteoclastic bone resorption when co-cultured with calvarial bone, but TAS-115 effectively suppressed the PC3-induced bone destruction. We found that macrophage colony-stimulating factor-dependent macrophage differentiation and subsequent receptor activator of NF-κB ligand-induced osteoclast formation were largely suppressed by adding TAS-115. The phosphorylation of the macrophage colony-stimulating factor receptor FMS and osteoclast related kinases such as ERK and Akt were also suppressed by the presence of TAS-115. Gene expression profiling showed that FMS expression was only seen in macrophage and in the osteoclast cell lineage. Our study indicates that tyrosine kinase signaling in host pre-osteoclasts/osteoclasts is critical for bone destruction induced by tumor cells and that targeting of MET/VEGF receptor/FMS activity makes it a promising therapeutic candidate for the treatment of prostate cancer patients with bone metastasis.

Highlights

  • VEGF signaling through the tyrosine kinase receptor VEGF receptor (VEGFR)3 is a pivotal factor for tumor angiogenesis that regulates tumor progression

  • We first investigated the effects of TAS-115, an inhibitor of VEGFR and MET kinases, on the bone destruction induced by PC3 cells in vivo

  • RT-PCR analysis of mouse primary osteoblasts, bone marrow-derived macrophages, osteoclasts, and PC3 cells indicated that bone marrow macrophages cultured with macrophage colony stimulating factor (M-CSF) expressed hepatocyte growth factor (HGF), MET, VEGF-A, VEGFR2, M-CSF, and FMS mRNAs, and the expression of VEGF-A mRNA was elevated in osteoclasts induced by adding soluble RANKL (sRANKL) to macrophages (Fig. 6)

Read more

Summary

Introduction

VEGF signaling through the tyrosine kinase receptor VEGF receptor (VEGFR)3 is a pivotal factor for tumor angiogenesis that regulates tumor progression. For this purpose we used TAS-115, which inhibits both MET and VEGFR, and examined its effects on PC3-induced bone resorption by directly injecting PC3 cells into the proximal medulla of tibiae in nude mouse and by the co-culturing of calvarial bone with PC3 cells in vitro.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call