Abstract

Although all chloroplasts appear to have been derived from a common ancestor, a major schism occurred early in the evolution of eukaryotic algae that gave rise to red and green photoautotrophic lineages. In Paleozoic and earlier times, the fossil record suggests that oceanic eukaryotic phytoplankton were dominated by the green (chl b‐containing) algal line. However, following the end‐Permian extinction, a diverse group of eukaryotic phytoplankton evolved from secondary symbiotic associations in the red (chl c‐containing) line and subsequently rose to ecological prominence. In the contemporary oceans, red eukaryotic phytoplankton taxa continue to dominate marine pelagic food webs, whereas the green line is relegated to comparatively minor ecological and biogeochemical roles. To help elucidate why the oceans are not dominated by green taxa, we analyzed and compared whole plastid genomes in both the red and green lineages. Our results suggest that whereas all algal plastids retain a core set of genes, red plastids retain a complementary set of genes that potentially confer more capacity to autonomously express proteins regulating oxygenic photosynthetic and energy transduction pathways. We hypothesize that specific gene losses in the primary endosymbiotic green plastid reduced its portability for subsequent symbiotic associations. This corollary of the plastid “enslavement” hypothesis may have limited subsequent evolutionary advances in the green lineage while simultaneously providing a competitive advantage to the red lineage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call