Abstract
In this paper, we extend the application of meshfree node based schemes for solving one-dimensional inverse Cauchy-Stefan problem. The aim is devoted to recover the initial and boundary conditions from some Cauchy data lying on the admissible curve s(t) as the extra overspecifications. To keep matters simple, the problem has been considered in one dimensional, however the physical domain of the problem is supposed as an irregular bounded domain in $$\mathbb {R}^2$$R2. The methods provide the space-time approximations for the heat temperature derived by expanding the required approximate solutions using collocation scheme based on radial point interpolation method (RPIM). The proposed method makes appropriate shape functions which possess the important Delta function property to satisfy the essential conditions automatically. In addition, to conquer the ill-posedness of the problem, particular optimization technique has been applied for solving the system of equations $$Ax=b$$Ax=b in which A is a nonsymmetric stiffness matrix. As the consequences, reliable approximate solutions are obtained which continuously depend on input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.