Abstract
ABSTRACT Post-starburst galaxies (PSBs) are defined as having experienced a recent burst of star formation, followed by a prompt truncation in further activity. Identifying the mechanism(s) causing a galaxy to experience a post-starburst phase therefore provides integral insight into the causes of rapid quenching. Galaxy mergers have long been proposed as a possible post-starburst trigger. Effectively testing this hypothesis requires a large spectroscopic galaxy survey to identify the rare PSBs as well as high-quality imaging and robust morphology metrics to identify mergers. We bring together these critical elements by selecting PSBs from the overlap of the Sloan Digital Sky Survey and the Canada–France Imaging Survey and applying a suite of classification methods: non-parametric morphology metrics such as asymmetry and Gini-M20, a convolutional neural network trained to identify post-merger galaxies, and visual classification. This work is therefore the largest and most comprehensive assessment of the merger fraction of PSBs to date. We find that the merger fraction of PSBs ranges from 19 per cent to 42 per cent depending on the merger identification method and details of the PSB sample selection. These merger fractions represent an excess of 3–46× relative to non-PSB control samples. Our results demonstrate that mergers play a significant role in generating PSBs, but that other mechanisms are also required. However, applying our merger identification metrics to known post-mergers in the IllustrisTNG simulation shows that 70 per cent of recent post-mergers (≲200 Myr) would not be detected. Thus, we cannot exclude the possibility that nearly all PSBs have undergone a merger in their recent past.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.