Abstract

The effect of pressure on the initial stages of the mercury photosensitized reactions of ethane has been investigated at room temperature. The production of methane increases with decreasing ethane pressure and is inhibited by the presence of molybdenum oxide. It has been shown that hydrogen atoms are produced in the initial stages of the reaction. It is concluded that the initial step is a C–H split and that an active ethane molecule is not formed. The dependence of quantum yields on pressure indicates that the initial step is about 100 percent effective and that inefficiency is caused by recombination of H and C2H5 resulting in the formation of ethane at high pressures by deactivation, and in the formation of methyl radicals at lower pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.