Abstract
The link between mental representation (MREP) structures and motor performance has been evidenced for a great variety of movement skills, but not for the human gait. Therefore the present study sought to investigate the cognitive memory structures underlying the human gait in young and older adults. In a first experiment, gait parameters at comfortable gait speed (OptoGait) were compared with gait-specific MREPs (structural dimensional analysis of MREP; SDA-M) in 36 young adults. Participants were divided into a slow- and fast-walking group. The proven relationship between gait speed and executive functions such as working memory led to the hypothesis that gait pattern and MREP differ between slow- and fast-walking adults. In a second experiment, gait performance and MREPs were compared between 24 young (27.9 years) and 24 elderly (60.1 years) participants. As age-related declines in gait performance occur from the seventh decade of life onward, we hypothesized that gait parameters would not be affected until the age of 60 years accompanied by unchanged MREP. Data of experiment one revealed that gait parameters and MREPs differed significantly between slow and fast walkers. Notably, eleven previously incurred musculoskeletal injuries were documented for the slow walkers but only two injuries and one disorder for fast walkers. Experiment two revealed no age-related differences in gait parameters or MREPs between healthy young and older adults. In conclusion, the differences in gait parameters associated with lower comfortable gait speeds are reflected by differences in MREPs, whereby SDA-M data indicate that the single limb support phase may serve as a critical functional period. These differences probably resulted from previously incurred musculoskeletal injuries. Our data further indicate that the human gait and its MREP are stable until the age of 60. SDA-M may be considered as a valuable clinical tool for diagnosis of gait abnormalities and monitoring of therapeutic effectiveness.
Highlights
It is widely accepted that skilled motor performance draws on general and taskspecific mental representations (MREPs) that are linked to perceptual effects and correspond to functional structures of movement kinematics
The only difference in CV could be documented for single support time with a higher value (21.8%; mean difference (MD) = 0.56%; 95% confidence interval (95% CI): 0.08 to 1.0%) in slow-walking adults
The results further indicate that the human gait and its MREP are stable until the age of 60 in healthy subjects
Summary
It is widely accepted that skilled motor performance draws on general and taskspecific mental representations (MREPs) that are linked to perceptual effects and correspond to functional structures of movement kinematics (cf. Bernstein, 1967; Hommel et al, 2001; Schack and Ritter, 2009; Land et al, 2013). Mental representation of the human gait and established with increasing amounts of practice and are regarded to be crucial for the organization and control of actions. The link between well-established MREP structures and motor performance has been evidenced for a great variety of movement skills (see Land et al, 2013 for a review), except for the human gait – an eminent skill for human beings. To date there is no evidence whether, or to what extent, functional and biomechanical changes of the human gait, associated with normal aging or musculoskeletal disorders/injuries of the lower extremities, are related to changes in action-related knowledge of the human gait in long-term memory (LTM)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.