Abstract

Faut gouge forms at the core of the fault as the result of a slip in the upper brittle crust. Therefore, the deformation mechanisms and conditions under which the fault gouge was formed can document the stages of fault movement in the crust. We carried out a microstructural analysis on a fault gouge from a hanging-wall branch fault of the Simplon Fault Zone, a major low-angle normal fault in the European Alps. We use thin-section analysis, together with backscattered electron imaging and X-ray diffractometry (XRD), to show that a multistage history from ductile to brittle deformation within the fault gouge. We argue that this multistage deformation history is the result of continuous exhumation history from high to low temperature, along the Simplon Fault Zone. Because of the predominance of pressure solution and veining, we associated a large part of the deformation in the fault gouge with viscous-frictional behaviour that occurred at the brittle-ductile transition. Phyllosilicates and graphite likely caused fault lubrication that we suggested played a role in localizing slip along this major low-angle normal fault.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.