Abstract

Agmatine is a polyamine suggested to act as a supposed neurotransmitter in the brain. Evidence has indicated that acute agmatine administration might modulate memory. The present study aimed to investigate the effect of repeated agmatine treatment on passive avoidance memory, hippocampal calcium–calmodulin-dependent protein kinase II-alpha (CaMKII-α), and Extracellular Signal-Regulated Kinase (ERK) signaling pathways in naive mice. Adult male NMRI mice were treated with agmatine (10, 20, 30, 40, and 80 mg/kg/ip) or saline for 11 days. Acquisition and retention tests of passive avoidance memory were performed on days 10 and 11, respectively. Following the memory retention test, the hippocampi were assessed for the levels of CaMKII-α and ERK using the western blotting technique. The results revealed the dose-dependent effect of agmatine on the passive avoidance memory. Accordingly, the memory was impaired in lower doses, but was improved in higher ones. Agmatine in none of the doses affected the nociception of the mice in tail-flick test. Furthermore, agmatine increased the phosphorylation of CaMKII-α and ERK in the hippocampus at memory enhancing doses, while ERK phosphorylation decreased following the impairing doses of agmatine. Thus, the dose-dependent effect of agmatine on memory might be related to its modulatory effect on CaMKII-α and ERK signal transduction, eventually regulating the memory process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call