Abstract

The fields of Minimally Invasive Surgery (MIS) and Natural Orifices Transluminal Endoscopic Surgery (NOTES) strive to reduce the level of invasiveness by entering the body through smaller incisions and natural orifices. Hyper-redundant snake-like instruments can help in this pursuit of reducing invasiveness. Such instruments can pass along multi-curved pathways through the body without any support or guidance from its anatomical environment. In this way, the width of the surgical pathway and thus the invasiveness of the procedure can be reduced significantly. This is referred to as Follow-the-Leader (FTL) motion.Generally, surgical instruments intended for FTL-motion are robotic systems that require medical grade actuators, sensors, and controllers, driving up costs and increasing their footprint in the operation room. Our goal was to discard the need for these elements and develop a non-robotic instrument capable of FTL-motion along pre-determined paths. A proof of concept prototype called MemoFlex II was developed, consisting of a cable-driven hyper-redundant shaft that is controlled via four physical tracks. The MemoFlex II was able to perform 3D FTL-motion along pre-determined paths. Among other things, this study reports on a Ø8 mm shaft containing seven segments and 14 degrees of freedom (DOFs) following several multi-curved paths with an average maximal footprint between 11.0 and 17.1 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.