Abstract

The membrane topology of the rat endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) Ca2+ ATPases were investigated using in vitro transcription/translation of fusion vectors containing DNA sequences encoding putative membrane-spanning domains. The sequences of these Ca2+ ATPases are identical except for the COOH-terminal end, which contains an additional predicted transmembrane segment in the ER ATPase. The M0 and M1 fusion vectors (Bamberg, K., and Sachs, G. (1994) J. Biol. Chem. 269, 16909-16919) encode the NH2-terminal 101 (M0 vector) or 139 (M1 vector) amino acids of the H,K-ATPase alpha subunit followed by a linker region for insertion of putative transmembrane sequences and, finally, the COOH-terminal 177 amino acids of the H,K-ATPase beta subunit containing five N-linked glycosylation consensus sequences. The linker region was replaced by the putative transmembrane domains of the Ca2+ ATPases, either individually or in pairs. Transcription and translation were performed using [35S]methionine in a reticulocyte lysate system in the absence or presence of canine pancreatic microsomes. The translated fusion protein was identified by autoradiography following separation using SDS-polyacrylamide gel electrophoresis. When testing single transmembrane segments, this method detects signal anchor activity with M0 or stop transfer activity with M1. The first four predicted SERCA transmembrane domains acted as both signal anchor and stop transfer sequences. A construct containing the fifth predicted transmembrane segment was able to act only as a stop transfer sequence. The sixth transmembrane segment did not insert cotranslationally into the membrane. The seventh was able to act as both a signal anchor and stop transfer sequence, and the eighth showed stop transfer ability in the M1 vector. The ninth transmembrane segment had both signal anchor and stop transfer capacity, whereas the tenth transmembrane segment showed only stop transfer sequence properties. The eleventh transmembrane sequence, unique to the ER Ca2+ ATPase, had both signal anchor and stop transfer properties. These translation data provide direct experimental evidence for 8 or 9 of the 10 or 11 predicted transmembrane sequences in the current topological models for the SR or ER Ca2+ ATPases, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.