Abstract

Respiratory inhibitors and uncouplers severely impair [55Fe]ferricrocin uptake by Neurospora crassa. parallel measurements of ATP decay and ferricrocin uptake, however, disprove the idea that direct input of metabolic energy in the form of ATP is required for transmembrane movement of siderophores. The role of the membrane potential for siderophore uptake was demonstrated using iron-deficient cells, which were derepressed in the glucose-II uptake system. Addition of high amounts of glucose (1 mM) to glu-II-derepressed cells leads to a membrane depolarization of about 120 mV, followed by a significant inhibition of ferricrocin uptake, which recovered after some minutes. Full transport inhibition occurred after membrane depolarization in the presence of plasma membrane ATP-ase inhibitors (DCCD or DES), indicating that the membrane potential is essential for siderophore transport in fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.