Abstract

Glycosylphosphatidylinositol-anchored prion protein and Thy-1, found in adjacent microdomains or "rafts" on the neuronal surface, traffic very differently and show distinctive differences in their resistance to detergent solubilization. Monovalent immunogold labeling showed that the two proteins were largely clustered in separate domains on the neuronal surface: 86% of prion protein was clustered in domains containing no Thy-1, although 40% of Thy-1 had a few molecules of prion protein associated with it. Only 1% of all clusters contained appreciable levels of both proteins (</=3 immunogold label for both). In keeping with this distribution, immunoaffinity isolation of detergent-resistant membranes (DRMs) using the non-ionic detergent Brij 96 yielded prion protein DRMs with little Thy-1, whereas Thy-1 DRMs contained approximately 20% of prion protein. The lipid content of prion protein and Thy-1 DRMs was measured by quantitative nano-electrospray ionization tandem mass spectrometry. In four independent preparations, the lipid content was highly reproducible, with Thy-1 and prion protein DRMs differing markedly from each other and from the total DRM pool from which they were immunoprecipitated. Prion protein DRMs contained significantly more unsaturated, longer chain lipids than Thy-1 DRMs and had 5-fold higher levels of hexosylceramide. The different lipid compositions are in keeping with the different trafficking dynamics and solubility of the two proteins and show that, under the conditions used, DRMs can isolate individual membrane microenvironments. These results further identify unsaturation and glycosylation of lipids as major sources of diversity of raft structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.