Abstract

Protein linkages to filamentous (F)–actin provide the cell membrane with mechanical stability and support intricate membrane architectures. However, the actin cytoskeleton is highly dynamic and undergoes rapid changes in shape during cell motility and other processes. The molecular mechanisms that generate a mechanically robust yet fluid connection between the membrane and actin cytoskeleton remain poorly understood. Here, we adapted a single-molecule optical trap assay to examine how the prototypical membrane-actin linker ezrin acts to anchor F-actin to the cell membrane. We find that ezrin forms a complex that slides along F-actin over micrometer distances while resisting detachment by forces oriented perpendicular to the filament axis. The ubiquity of ezrin and analogous proteins suggests that sliding anchors such as ezrin may constitute an important but overlooked element in the construction of the actin cytoskeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.