Abstract
Melatonin is a signaling molecule that mediates multiple stress-dependent reactions. Under photooxidative stress conditions generating intensive ROS production, exogenous melatonin (50 µM) contributed to maintaining the expression of mitochondrial encoded genes and up-regulation of RNA-polymerase genes RPOTm and RPOTmp, operating through the CAND2 receptor and α-subunit of the heterotrimeric G protein GPA1 coupled with CAND2. Unlike wild-type plants, mutants with defective CAND2 and GPA1 genes exhibited no decrease in the alternative pathway of leaf respiration, as well as the activity of an alternative oxidase, and the expression of the AOX1a gene. At the same time, the protective effect of exogenous melatonin on some physiological indicators did not depend on the receptor and was associated with the direct antioxidant function of the regulator. Thus, melatonin under photooxidative stress conditions can act as an antioxidant and as a hormone capable of regulating the expression of nuclear and organelle genes through the components of melatonin signal perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.