Abstract

How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.