Abstract

Chromosome instability is one of the hallmarks of cancer. Stromal antigen (STAG) 3 is a core component of the meiosis-specific cohesin complex, which regulates sister chromatid cohesion. Although aberrantly activated genes encoding the cohesin complex have been identified in cancers, little is known about the role of STAG3 in colorectal cancer (CRC). Here, we evaluated the prognostic impact and role of STAG3 in CRC. Analysis of 172 CRC surgical specimens revealed that high STAG3 expression was associated with poor prognosis. STAG3 knockdown inhibited cell migration and increased drug sensitivity to oxaliplatin, 5-fluorouracil, irinotecan hydrochloride hydrate, and BRAF inhibitor in CRC cell lines. The enhanced drug sensitivity was also confirmed in a human organoid established from a CRC specimen. Moreover, suppression of STAG3 increased γH2AX foci. Particularly, in BRAF-mutant CRC cells, STAG3 silencing suppressed the expression of snail family transcriptional repressor 1 and phosphorylation of extracellular signal-regulated kinase via upregulation of dual-specificity phosphatase 6. Our findings suggest that STAG3 is related to poor clinical outcomes and promotes metastasis and chemotherapeutic resistance in CRC. STAG3 may be a novel prognostic marker and potential therapeutic target for CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call