Abstract

Observational confirmation of hot accretion model predictions has been hindered by the challenge to resolve spatially the Bondi radii of black holes with X-ray telescopes. Here, we use the Megasecond Chandra X-ray Visionary Project (XVP) observation of the NGC~3115 supermassive black hole to place the first direct observational constraints on the spatially and spectroscopically resolved structures of the X-ray emitting gas inside the Bondi radius of a black hole. We measured temperature and density profiles of the hot gas from a fraction out to tens of the Bondi radius (R_B = 2.4-4.8 arcsec = 112-224 pc). The projected temperature jumps significantly from ~0.3 keV beyond 5 arcsec to ~0.7 keV within ~4-5 arcsec, but then abruptly drops back to ~0.3 keV within ~3 arcsec. This is contrary to the expectation that the temperature should rise toward the center for a radiatively inefficient accretion flow. A hotter thermal component of ~1 keV inside 3 arcsec (~150 pc) is revealed using a two component thermal model, with the cooler ~0.3 keV thermal component dominating the spectra. We argue that the softer emission comes from diffuse gas physically located within $\sim 150$~pc from the black hole. The density profile is broadly consistent with rho ~ r^{-1} within the Bondi radius for either the single temperature or the two-temperature model. The X-ray data alone with physical reasoning argue against the absence of a black hole, supporting that we are witnessing the onset of the gravitational influence of the supermassive black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.