Abstract

Constructing high-assurance, secure hardware remains a challenge, because to do so relies on both a verifiable means of hardware description and implementation. However, production hardware description languages (HDL) lack the formal underpinnings required by formal methods in security. Still, there is no such thing as high-assurance systems without high-assurance hardware. We present a core calculus of secure hardware description with its formal semantics, security type system, and mechanization in Coq. This calculus is the core of the functional HDL, ReWire, shown in previous work to have useful applications in reconfigurable computing. This work supports a full-fledged, formal methodology for producing high-assurance hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.