Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is characterized by synovial hyperplasia and progressive joint destruction. The activation of RA synovial fibroblasts (SFs), also called fibroblast-like synoviocytes (FLS), contributes significantly to perpetuation of the disease. Genetic and environmental factors have been reported to be involved in the etiology of RA but are insufficient to explain it. In recent years, accumulating results have shown the potential role of epigenetic mechanisms, including histone modifications, DNA methylation, and microRNAs, in the development of RA. Epigenetic mechanisms regulate chromatin state and gene transcription without any change in DNA sequence, resulting in the alteration of phenotypes in several cell types, especially RASFs. Epigenetic changes possibly provide RASFs with an activated phenotype. In this paper, we review the roles of epigenetic mechanisms relevant for the progression of RA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.