Abstract

Water deficit stress severely threatens crop yield and numerous reports have shown silicon could enhance plants resistance to water deficit. One of the most important mechanisms is that silicon maintains the water balance. In this review, we summarized advanced research to elucidate the effect of silicon on plant water transport processes, including leaf water loss, vessel water transport, and root water uptake. In leaves, the deposition of silica phytolith on cuticle and stomata decreases transpirational water loss under water deficit stress. However, accumulating evidence suggest that silicon maintaining leaf water content is not through reducing water loss, but through osmotic adjustments, enhancing water transport and uptake. Enhancement of stem water transport efficiency by silicon is due to silica phytolith depositing in the cell wall of vessel tubes and pits, which support it avoiding to collapse and embolism, respectively. The improvement of root water uptake capacity by silicon acts as a key role in maintaining water balance. The underlying mechanisms include (i) enlargement of the root water uptake area, (ii) improvement of the water driving force, (iii) the prevention of water loss from root to soil, and (iv) the up-regulation of aquaporin activity. This review provides three simple models to understand the mechanism of silicon on water balance and highlights the future research area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call