Abstract

The known detailed mechanisms of oxidation of the higher hydrocarbons include hundreds of particles and thousands of reactions. In spite of their merits, the use of such mechanisms for solving applied problems of the gas dynamics of combustion is impeded at present because of great computational expenditures. We suggest a compact kinetic mechanism of the oxidation of n-butane including the main processes and intermediate and final reaction products. The mechanism can be classified as a nonempirical detailed mechanism, because all its elementary reactions are kinetically substantiated. The mechanism does not contain reactions of the double addition of oxygen and intermediate species in the form of isomeric compounds and their derivatives. The calculation results are compared with the experimental data on the oxidation, self-ignition, and combustion of n-butane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call