Abstract

BackgroundAcute lung injury is a common complication of sepsis in intensive care unit patients. Inflammation is among the main mechanisms of sepsis. Therefore, suppression of inflammation is an important mechanism for sepsis treatment. Mesenchymal stem cells (MSCs) have been reported to exhibit antimicrobial properties.ObjectiveThe present study investigated the effects of MSCs on sepsis-induced acute lung injury.MethodsMale C57BL/6 mice underwent a cecal ligation and puncture (CLP) operation to induce sepsis and then received either normal saline or MSCs (1 × 106 cells intravenously) at 3 hours after surgery. Survival after surgery was assessed. Lung injury was assessed by histology score, the presence of lung edema, vascular permeability, inflammatory cell infiltration, and cytokine levels in bronchoalveolar lavage fluid. Finally, we tested nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue.ResultsAs expected, CLP caused lung injury as indicated by significant increases in the histopathology score, lung wet to dry weight ratio, and total protein concentration. However, mice treated with MSCs had amelioration of the lung histopathologic changes, lung wet to dry weight ratio, and total protein concentration. The levels of cytokines tumor necrosis factor alpha, interleukin 6, interleukin 1β, and interleukin 17 in bronchoalveolar lavage fluid were dramatically decreased after MSCs treatment. In contrast, expression of interleukin 10 was increased after MSCs treatment. Moreover, mice treated with MSCs had a higher survival rate than the CLP group. Neutrophil infiltration into bronchoalveolar lavage fluid was attenuated after MSCs injection, but the amounts of macrophages observed in the MSC group showed no significant differences compared with the CLP group. In addition, MSCs treatment significantly reduced nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue.ConclusionsBased on the above findings, treatment with MSCs dampened the inflammatory response and inhibited nuclear factor kappa-light-chain-enhancer of activated B cells activation in the mouse CLP model. Thus, MSCs may be a potential new agent for the treatment of sepsis-induced acute lung injury. (Curr Ther Res Clin Exp. 2020; 81:XXX–XXX)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call