Abstract

ABSTRACTTires are used by the customers during several tens of thousands of kilometres, and before their replacement, the driver will encounter a continuous variation of tread depth due to the tire wearing. Although the wet braking labelling demonstrates the performance of the tire in the new stage, it is known that the wet traction evolves with tire wear. In this paper, an in-depth comparison of the wet grip performance of new and worn tires will be conducted, based on the regulatory wet braking test. For this purpose, we propose an original approach to analyse braking test results, which allows breaking down and quantifying the relative importance of the mechanisms involved during this test. This study demonstrates that two main mechanisms are taking place during the entire test: rubber friction and hydroplaning mechanisms. The µ value obtained at low speeds reflects the friction potential of the tested tires while the decline of performance at higher speeds is attributed to hydroplaning mechanisms. This analysis is conducted on numerous tires and demonstrates that current regulatory test applied on new tires is focussing mainly on the rubber friction mechanism. The same test applied on worn tires exhibits both rubber friction and hydroplaning mechanisms. The mechanisms decomposition shows that the source of the performance decline from new to worn status varies greatly, some tires having most of their performance loss due to hydroplaning, some others due to rubber friction drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call