Abstract
Waves are common in cortical networks and may be important for carrying information about a stimulus from one local circuit to another. In a recent study of visually evoked waves in rat cortex, compression and reflection of waves are observed as the activation passes from visual areas V1 to V2. The authors of this study apply bicuculline (BMI) and demonstrate that the reflection disappears. They conclude that inhibition plays a major role in compression and reflection. We present several models for propagating waves in heterogeneous media and show that the velocity and thus compression depends weakly on inhibition. We propose that the main site of action of BMI with respect to wave propagation is on the threshold for firing which we suggest is related to action on potassium channels. We combine numerical and analytic methods to explore both compression and reflection in an excitable system with synaptic coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.