Abstract

The phthalocyanines have recently been suggested as one of most effective possible sensitizers for photodynamic therapy and the blood viral inactivation. The further characterisation of the mechanism of human red blood cell lysis and membrane alterations upon photodynamic treatment in the presence of Zn-phthalocyanine was the aim of this study. It was found that there were (2.7±0.4)·10 7 dye binding sites per red blood cell with the association constant equal to (1.4±0.3)·10 4 M −1. Two types of the photosensitized haemolysis: haemolysis during irradiation (“light” haemolysis) and post-irradiation haemolysis (“dark” haemolysis) were studied. The erythrocyte membrane hyperpolarisation, membrane fluidisation and cell swelling preceded the “light” haemolysis. The modification of the erythrocyte membrane band 3 protein by DIDS (an inhibitor of anion exchange) increased the rate of the “light” haemolysis. The rate of “dark” haemolysis was higher and that of “light” haemolysis was lower in potassium media in comparison to sodium ones. The rates of photohaemolysis depended on the erythrocyte membrane potential: a decrease of membrane potential inhibited both types of haemolysis. The cell shrinkage in the presence of sucrose (up to 15 mM) inhibited the “dark” haemolysis but significantly increased the “light” haemolysis. Oxidation of intracellular oxyHb to metHb by nitrite, which drastically decreases intracellular oxygen concentration, as well as GSH concentration, inhibited the rate of the “light” haemolysis. The results allow for the conclusion that the mechanism of photochemical (“light”) haemolysis is not of a colloid-osmotical type, in contrast to the post-irradiation (“dark”) haemolysis. The photochemical oxidation or denaturation of band 3 protein plays a significant role in the formation of haemolytic holes. The membrane lipid peroxidation, as well as glutathione oxidation, does not participate in the process of photosensitized haemolysis. From the inhibition of “dark” haemolysis by sucrose the apparent pore radius was estimated to be about 1.1 nm. The pores appear to be transient short-lived ones, the average pore number per cell was 0.02.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call