Abstract
A study was made of the laminar-turbulent transition of a wake behind a thin flat plate which was placed parallel to a uniform flow at subsonic speeds. Experimental results on the nature of the velocity fluctuations have made it possible to classify the transition region into three subregions: the linear region, the non-linear region and the three-dimensional region.In the linear region there is found a sinusoidal velocity fluctuation which is antisymmetrical with respect to the centre-line of the wake. The frequency of fluctuation is proportional to the power of the free-stream velocity, and the amplitude increases exponentially in the direction of flow. The behaviour of small disturbances in the linear region was investigated in detail by inducing velocity fluctuation with an external excitation—actually sound from a loudspeaker. Solutions of the equation of a small disturbance superposed on the laminar flow were obtained numerically and compared with the experimental results. The agreement between the two was satisfactory.When the amplitude of fluctuation exceeds a certain value, the growth rate deviates from being exponential due to non-linear effects. Although velocity fluctuations in the non-linear region are still sinusoidal and two-dimensional, the experimental results on the distributions of amplitude and phase indicate that the flow pattern may be described by the model of a double row of vortices. This configuration lasts until three-dimensional distortion takes place in the final subregion, the three-dimensional region, in which the fluctuation loses regularity and gradually develops into turbulence without being accompanied by abrupt breakdown or turbulent bursts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.