Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with unknown etiology, characterized by motor neuron degeneration, and there is no highly effective treatment. The canonical WNT/β-catenin signaling pathway has a critical role in the physiological and pathophysiological processes of the central nervous system. In this study, we investigated the regulatory mechanism of the WNT/β-catenin signaling pathway from the perspective of ligand-receptor binding and its relationship with the degeneration of ALS motor neurons. We used hSOD1-G93A mutant ALS transgenic mice and hSOD1-G93A mutant NSC34 cells combined with morphological and molecular biology techniques to determine the role of the WNT/β–catenin pathway in ALS. Our findings demonstrated that WNT5A regulates the WNT/β-catenin signaling pathway by binding to the FZD4 receptor in the pathogenesis of ALS and affects the proliferation and apoptosis of ALS motor neurons. Therefore, these findings may lead to the development of novel therapies to support the survival of ALS motor neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.