Abstract
The unified reaction valley approach (URVA) is used in connection with a dual-level approach to describe the mechanism of ten different cycloadditions of 1,3- dipoles XYZ (diazonium betaines, nitrilium betaines, azomethines, and nitryl hydride) to acetylene utilizing density functional theory for the URVA calculations and CCSD(T)-F12/aug-cc-pVTZ for the determination of the reaction energetics. The URVA results reveal that the mechanism of the 1,3-dipolar cycloadditions is determined early in the van der Waals range where the mutual orientation of the reactants (resulting from the shape of the enveloping exchange repulsion spheres, electrostatic attraction, and dispersion forces) decides on charge transfer, charge polarization, the formation of radicaloid centers, and the asynchronicity of bond formation. All cycloadditions investigated are driven by charge transfer to the acetylene LUMO irrespective of the electrophilic/nucleophilic character of the 1,3-dipole. However, an insufficient charge transfer typical of an electrophilic 1,3- dipole leads to a higher barrier. Energy transfer and energy dissipation as a result of curvature and Coriolis couplings between vibrational modes lead to an unusual energy exchange between just those bending modes that facilitate the formation of radicaloid centers. The relative magnitude of the reaction barriers and reaction energies is rationalized by determining reactant properties, which are responsible for the mutual polarization of the reactants and the stability of the bonds to be broken or formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.