Abstract

The trace element geochemistry and microtextures of neomorphosed mollusks from the upper Purbeck Formation (Late Jurassic-Early Cretaceous) of southern England suggest that calcite replacement of aragonite occurs by a force of crystallization-driven mechanism similar to that of non-polymorphic skeletal carbonate replacement reactions, such as silicification. The Purbeck neomorphic calcites are substantially enriched in Mg, Mn, and Fe, and depleted in Sr compared to skeletal aragonite indicating that the neomorphic reaction zones were not chemically isolated from the bulk pore waters to a significant degree. Neomorphic calcite microtextures are fundamentally similar to the replacement microtextures of silicified and celestite-replaced fossils, in terms of the degree and style of preservation of traces of skeletal microtextures in authigenic crystals and the relationships of authigenic crystal morphology and crystallographic orientation to shell microtexture. The neomorphic replacement of aragonite by calcite differs from most non-polymorphic replacement reactions in that the calcite cannibalizes aragonite. Decreases in the intraskeletal pore water calcium carbonate ion activity product caused by calcite precipitation results in aragonite dissolution adjacent to aragonite-calcite contacts (i.e., chalkification) in some fossils. Chalkification does not occur in non-polymorphic replacements of skeletal carbonate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call