Abstract

Elucidation of the laws governing the reduction process in flooded rice paddy soil is indispensable for developing the lowland rice cultivation system by which the oxidation-reduction conditions for optimum growth can be maintained throughout the growth of the crop. The authors’ efforts have been focussed on the microbial metabolism of the reduction process in paddy soil, using waterlogged soil incubated in closed syringes as a simplified model of rice paddy field soil under flooded conditions. Such conditions can be assumed to occur throughout the plowed layer of field soil under flooding, except for the uppermost layer to which oxygen is supplied. One may conclude from the results of this investigation that the type of microbial metabolism in waterlogged soil changes successively according to the oxidation-reduction state from aerobic respiration in the presence of molecular oxygen, which is the most efficient energy-yielding reaction, to methane fermentation, which appears to be a less efficient energy-yielding reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.