Abstract

Respiratory complex I, the biggest enzyme of respiratory chain, plays a key role in energy production by the mitochondrial respiratory chain and has been implicated in many human neurodegenerative diseases. Recently, the crystal structure of respiratory complex I is reported. We perform 50 ns molecular dynamics simulations on the membrane domain of respiratory complex I under two hypothetical states (oxidized state and reduced state). We find that the density of water molecules in the trans-membrane domain under reduced state is bigger than that under oxidized state. The connecting elements (helix HL and β-hairpins-helix element) fluctuate stronger under reduced state than that under oxidized state, causing more internal water molecules and facilitating the proton conduction. The conformational changes of helix HL and the crucial charged residue Glu in TM5 play key roles in the mechanism of proton translocation. Our results illustrate the dynamic behavior and the potential mechanism of respiratory complex I, which provides the structural basis for drug design of respiratory complex I.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.