Abstract

Antibiotics undergo a series of complex transport and transformation route after entering the environment; however, there is scarce information about the effects of the bacterial phosphate-solubilizing process on tetracycline (TC) transformation. In this study, Pseudomonas sp. TC952 was identified as phosphate-solubilizing bacterium with high phosphate-solubilizing ability even under TC stress; it could solubilize maximum phosphate with a production of 400mg/L soluble phosphate in 2days. TC did not affect phosphate solubilizing in a short time incubation, but slightly promoted in a long incubation time. TC was adsorbed by inorganic phosphate with high efficiency of 53.09% within 1day. Four tetracycline antibiotic resistance and sixteen inorganic phosphate-solubilizing-related genes were identified in the genome, which revealed the phosphate-solubilizing mechanism was that strain TC952 secrete organic acid to resolve inorganic phosphate and also secrete siderophore to chelate inorganic phosphate. So, during the inorganic phosphate-solubilizing process of strain TC952, TC was de-adsorbed from inorganic phosphate, and the solution was acidified into pH 4.3 through secreting organic acid to dissolve inorganic phosphorus, which resulted in Ca2+ and PO43- releasing into the solution. Finally, the acidic condition and PO43- enhanced TC hydrolysis. The mechanism of phosphate-solubilizing process on TC removal and genome analysis provides us new insight of the TC migration and transformation route in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call