Abstract

The alkylation of phenol with methanol on HY and CsY/CsOH catalysts was studied in situ under static conditions by 13C NMR spectroscopy. Attention was largely given to the identification of intermediate compounds and mechanisms of anisole, cresol, and xylenol formation. The mechanisms of phenol methylation were found to be different on acid and basic catalysts. The primary process on acid catalysts was the dehydration of methanol to dimethyl ether and methoxy groups. This resulted in the formation of anisole and dimethyl ether, the ratio between which depended on the reagent ratio, which was evidence of similar mechanisms of their formation. Subsequent reactions with phenol gave cresols and anisoles. Cresols formed at higher temperatures both in the direct alkylation of phenol and in the rearrangement of anisole. The main alkylation product on basic catalysts was anisole formed in the interaction of phenolate anions with methanol; no cresol formation was observed. The deactivation of acid catalysts was caused by the formation of condensed aromatic hydrocarbons that blocked zeolite pores. The deactivation of basic catalysts resulted from the condensation of phenol and formaldehyde with the formation of phenol-formaldehyde resins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call