Abstract
SnO2, as a highly stable and carbon-free catalyst, is widely used in proton exchange membrane fuel cell as support. In order to shed light on the mechanism of oxygen reduction reaction on SnO2, the activation of the oxygen atom and molecule on undoped and Pt-doped SnO2 was investigated using the first-principles method in this study. We found that: (a) the Pt dopants in the SnO2(110) surfaces are positively charged; (b) the O-vacancy sites are the most preferable for the adsorption of molecular oxygen; (c) O− species, the most reactive form of oxygen, are easy to be formed through the activation of molecular oxygen on the O-defect sites of the Pt-doped SnO2 surface; and (d) the synergetic effects of Pt dopant and O-vacancy would be the key to the O2 activation. The current results shed light on the activation mechanism of oxygen species on undoped and Pt-doped SnO2 supports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.