Abstract

Apples exhibit S-RNase-mediated self-incompatibility and typically require cross-pollination in nature. 'Hanfu' is a cultivar that produces abundant fruit after self-pollination, although it also shows a high rate of seed abortion afterwards, which greatly reduces fruit quality. In this study, we investigated the ovule development process and the mechanism of ovule abortion in apples after self-pollination. Using a DIC microscope and biomicroscope, we found that the abortion of apple ovules occurs before embryo formation and results from the failure of sperm-egg fusion. Further, we used laser-assisted microdissection (LAM) cutting and sperm and egg cell sequencing at different periods after pollination to obtain the genes related to ovule abortion. The top 40 differentially expressed genes (DEGs) were further verified, and the results were consistent with switching the mechanism at the 5' end of the RNA transcript (SMART-seq). Through this study, we can preliminarily clarify the mechanism of ovule abortion in self-pollinated apple fruits and provide a gene reserve for further study and improvement of 'Hanfu' apple fruit quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.