Abstract
Three aspects of the catalytic reduction of NO x have been investigated with particular emphasis on Cu-ZSM5. The reaction using methane shows a large kinetic isotope effect which is absent with isobutane. Thus, while abstraction of hydrogen from methane is rate determining, a different step plays that role with higher hydrocarbons. With Cu-ZSM5 and Co-ZSM5 the equilibration step, NO to NO 2, is incomplete below 400°C in the presence and absence of methane. However, conversion of NO 2 to NO is near complete when using isobutane over Cu-ZSM5, possibly due to a process which also maintains the catalyst free of deposited material. Measurements of the further reactions of isocyanic acid, HNCO, over Cu-ZSM5 at 270°C show that its rate of hydrolysis to CO 2 and NH 3 is fast while that with NO to give N 2 and N 2O is absent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.