Abstract

The capacity of beef heart mitochondria to undergo osmotically induced volume changes in decimolar M+-acetate or other weak acid anion media is characterized by the following features: (1) mitochondria resist swelling when suspended in potassium or rubidium acetate media in the presence of respiratory inhibitors; (2) mitochondria swell extensively when suspended in ammonium or sodium acetate media in the presence of respiratory inhibitors; and (3) actively respiring mitochondria swell extensively whether suspended in ammonium, sodium, potassium, or rubidium acetate media. These findings have been interpreted to mean that (1) the nonenergized mitochondrial inner membrane is permeable to acetate anions, (2) the nonenergized mitochondrial inner membrane is permeable to ammonium and sodium ions in the presence of acetate or other weak acid anions, (3) the nonenergized mitochondrial inner membrane is relatively impermeable to potassium and rubidium ions in the presence of acetate or other weak acid anions, and (4) energized mitochondria are considerably more permeable to potassium and rubidium (acetate) ions than are non-energized mitochondria. The experiments described in this communication which provide the evidence for these interpretations involve methods which are independent of volume changes. The results confirm the first three of the above interpretations but are inconsistent with the fourth. A general theory for passive ion movements in mitochondria is presented and the results are discussed in terms of the development of an energy dependent ion gradient as the key to energized swelling in potassium or rubidium acetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call