Abstract

Specific phenol compounds including rhododendrol (RD), a skin-brightening ingredient in cosmetics, are reported to induce leukoderma, inducing a social problem, and the elucidation of mechanism of leukoderma is strongly demanded. This study investigated the relationship among the cytotoxicities of six phenol compounds on B16F10 melanoma cells and HaCaT keratinocytes and generated reactive oxygen species (ROS). As a result, the cytotoxicity of RD on B16F10 cells was higher than that on HaCaT cells, and RD significantly increased intracellular ROS and hydrogen peroxide (H2O2) levels in B16F10 cells. Furthermore, although raspberry ketone (RK), RD derivative, also increased intracellular ROS in B16F10 cells, increase in ROS was suppressed by disodium dihydrogen ethylenediaminetetraacetate dehydrate (EDTA). The amounts of increased ROS with RK in HaCaT cells without melanocyte were further increased by tyrosinase. Therefore, tyrosinase, a metalloprotein having copper, was speculated to be one of causative agents allowing phenol compounds to work as a prooxidant. Hydroxyl radical was generated by adding a mixture of tyrosinase and H2O2 to RD, and the amount of the radical was further increased by UVB, indicating that RD cytotoxicity was caused by intracellularly increased ROS, which possibly related to phenol induced prooxidants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.