Abstract

It is now well-established that arsenic exposure induces hypertension in humans. Although arsenic-induced hypertension is reported in many epidemiological studies, the underlying molecular mechanism of arsenic-induced hypertension is not fully characterized. In the human body, blood pressure is primarily regulated by a well-known physiological system known as the renin-angiotensin system (RAS). Hence, we explored the potential molecular mechanisms of arsenic-induced hypertension by investigating the regulatory roles of the RAS. Adult C57BL/6JJcl male mice were divided into four groups according to the concentration of arsenic in drinking water (0, 8, 80, and 800 ppb) provided for 8 weeks. Arsenic significantly raised blood pressure in arsenic-exposed mice compared to the control group, and significantly raised plasma MDA and Ang II and reduced Ang (1–7) levels. RT-PCR results showed that arsenic significantly downregulated ACE2 and MasR in mice aortas. In vitro studies of endothelial HUVEC cells treated with arsenic showed increased level of MDA and Ang II and lower levels of Ang (1–7), compared with the control. Arsenic significantly downregulated ACE2 and MasR expression, as well as those of Sp1 and SIRT1; transcriptional activators of ACE2, in HUVECs. Arsenic also upregulated markers of endothelial dysfunction (MCP-1, ICAM-1) and inflammatory cytokines (IL-6, TNF-α) in HUVECs. Our findings suggest that arsenic-induced hypertension is mediated, at least in part, by oxidative stress-mediated inhibition of ACE2 as well as by suppressing the vasoprotective axes of RAS, in addition to the activation of the classical axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.