Abstract

ABSTRACT The pivotal role of lncRNAs in osteoporosis progression and development necessitates a comprehensive exploration of the functional and precise molecular mechanisms underlying lncRNA SNHG1’s regulation of osteoblast differentiation and calcification. The study involved inducing BMSCs cells to differentiate into osteoblasts, followed by transfections of miR-497-5p inhibitors, pcDNA3.1-SNHG1, sh-HIF1AN, miR-497-5p mimics, and respective negative controls into BMSCs. Quantitative PCR (qPCR) was employed to assess the expression of SNHG1 and miR-497-5p. Western Blotting was conducted to measure the levels of short stature-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and HIF1AN. Alkaline phosphatase (ALP) activity was determined using appropriate assay kits. Calcium nodule staining was performed through Alizarin red staining. Dual luciferase reporter gene assays were executed to validate the interaction between SNHG1 and miR-497-5p, as well as HIF1AN. Throughout osteogenic differentiation, there was a down-regulation of SNHG1 and HIF1AN, in contrast to an elevation in miR-497-5p levels. Direct interactions between miR-497-5p and both SNHG1 and HIF1AN were observed. Notably, SNHG1 exhibited the ability to modulate HIF1AN by influencing miR-497-5p, thereby inhibiting osteogenic differentiation. Functioning as a competitive endogenous RNA, lncRNA SNHG1 exerts an inhibitory influence on osteogenic differentiation via the miR-497-5p/HIF1AN axis. This highlights the potential for lncRNA SNHG1 to emerge as a promising therapeutic target for osteoporosis. The study’s findings pave the way for a novel target strategy in the future treatment of osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.