Abstract

Quantum chemical calculations have been used to investigate the rate constant and mechanism of ammonia synthesis on a stepped ruthenium surface at typical industrial conditions. Both the commonly accepted dissociative mechanism and an associative mechanism of ammonia formation are explicitly considered. Uncertainties on the calculated parameters have been estimated using a recently developed functional utilizing Bayesian statistics. A surprisingly stable intermediate is identified in the associative mechanism, which is reached via an accordingly low barrier. This gives rise to a much higher rate constant of ammonia synthesis for the associative mechanism than previously considered. The results confirm that at typical industrial operating conditions the dissociative mechanism is dominant, with a difference in rate constants between the two mechanisms of around 3 orders of magnitude. However, consideration of uncertainties on the calculated parameters indicates that only a small change to the activation ene...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.