Abstract

The intermolecular hydroaminoalkylation of unactivated alkenes and vinyl arenes with secondary amines occurs readily in the presence of tantalum and niobium binaphtholate catalysts with high regio- and enantioselectivity (up to 98% ee). Mechanistic studies have been conducted in order to determine the kinetic order of the reaction in all reagents and elucidate the rate- and stereodetermining steps. The effects of substrate steric and electronic properties on the overall reaction rate have been evaluated. The reaction is first order in amine and the catalyst, while exhibiting saturation in alkene at high alkene concentration. Unproductive reaction events including reversible amine binding and arene C-H activation have been observed. The formation of the metallaaziridine is a fast reversible nondissociative process and the overall reaction rate is limited either by amide exchange or alkene insertion, as supported by reaction kinetics, kinetic isotope effects, and isotopic labeling studies. These results suggest that the catalytic activity can be enhanced by employing a more electron-deficient ligand backbone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.