Abstract
The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosphodiester bond between the substituent and 5' adjacent phosphate. The product of Tdp1 cleavage in the case of the AP site is unstable and is hydrolyzed with the formation of 3'- and 5'-margin phosphates. The following repair demands the ordered action of polynucleotide kinase phosphorylase, with XRCC1, DNA polymerase β, and DNA ligase. In the case of THF, Tdp1 generates break with the 5'-THF and the 3'-phosphate termini. Tdp1 is also able to effectively cleave non-nucleotide insertions in DNA, decanediol and diethyleneglycol moieties by the same mechanism as in the case of THF cleavage. The efficiency of Tdp1 catalyzed hydrolysis of AP-site analog correlates with the DNA helix distortion induced by the substituent. The following repair of 5'-THF and other AP-site analogs can be processed by the long-patch base excision repair pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.