Abstract
DC reactive magnetron sputtering of zinc target in argon-oxygen sputtering atmosphere has been used to grow ZnO thin films/nanorods on Si in a wide substrate temperature range of 300–750°C and under different sputtering conditions, namely, DC power, sputtering pressure and oxygen percentage in the sputtering atmosphere. Powder X-ray diffraction, Raman spectroscopy and a combination of top-down and cross-sectional scanning electron microscopy studies of ZnO films and nanorods grown under different conditions, have shown that substrate temperature critically controls their growth behavior and morphology, eventually resulting in the growth of vertically c-axis oriented, highly aligned and separated ZnO nanorods at substrate temperatures of 700–750°C. The strongly substrate temperature dependent growth of nanorods is explained by considering that the growth above 600°C, takes place in the ‘desorption regime’, in which, the surface diffusion length decreases exponentially with temperature. The diameter of nanorods increases with increase of DC power or decrease of sputtering pressure, which is attributed to the increase of surface diffusion length at higher deposition flux. The morphology of ZnO nanorods is not significantly affected by oxygen percentage in the sputtering atmosphere, since it does not influence the deposition flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.