Abstract

The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. ‘Targeted gene replacement’ (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and ‘batch’ transformations, DNA can also be found to undergo ‘targeted insertion’ (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.